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RESEARCH MEMORANDUM 

LOADS DUE To CONTROIS AT TRANSONIC AND 

LOW SUPERSONIC SPEEDS 

By F. E. West, Jr., and K. R. Czarnecki 

Some resu l t s  of recent experimental investigations a t  supersonic 
and transonic speeds are presented t o  show the present s ta tus  i n  the  
estimation of load dis t r ibut ions on controls and adjacent w i n g  surfaces 
resu l t ing  f r an  the deflection of f l ap  controls and spoi ler  controls. 
The r e su l t s  indicate that the develapment of methods fo r  predicting loads 
associated with controls has not kept pace with the  acquisit ion of experi- 
mental data. 
strong three-dimensional-flow character is t ics  which cannot be t rea ted  by 
the  simplified methods previously developed for controls without sweep. 
A t  transonic speeds the estlmation of loads associated with controls m u s t  
usually be dependent upon experimental information inasmuch as the l a t e s t  
attemgts t o  predict  chordwise and spanwise loadings have met with only 
limited success. 

A t  low supersonic speeds sweeping the  hinge l i n e  induces 

INTRODIETION 

Two problems m u s t  be considered i n  the estimation of loads associated 

lh the  last f e w  years a f a i r l y  large amount 
with controls: the d i rec t  loads on the  controls themselves, and those loads 
induced on adjacent surfaces. 
of experimental information has been obtained on these types of loads. 
Some success i n  the prediction of these loads has a l so  been real ized a t  
supersonic speeds, but at  transonic speeds success in  the prediction of 
these loads has been much more limited. 

In this paper some re su l t s  of the most recent investigations a t  
supersonic speeds pertaining t o  f laps  with a swept hinge l i ne  and t o  
spoilers are discussed. 
resul ts ,  since the transonic range i s  where the loads problems of m o s t  
concern s t i l l  appear t o  exis t .  
present s t a t e  of the a r t  i n  the estimation of loads due t o  controls. 
The re su l t s  at supersonic speeds were obtained i n  the Langley 4- by &-foot 
supersonic pressure tunnel, and the resul ts  at transonic speeds were 
obtained in  the Langley 16-foot transonic tunnel. 

However, most of  the paper pertains t o  transonic 

An attempt i s  a lso  made t o  indicate the 

I n  the t e s t s  a t  
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supersonic speeds t r ans i t i on  w a s  f ixed near the leading edge by s t r i p s  of 
carborundum grains, while i n  the t e s t s  at  transonic speeds the Reynolds 
numbers were always suf f ic ien t ly  high t o  insure a turbulent boundary layer 
over most of the wing chord. 

SYMBOLS 

increment i n  pressure coeff ic ient  due t o  control deflection 
o r  projection 

resul tant  difference i n  pressure coeff ic ients  between upper 
and lower surfaces due t o  control deflection 

normalized section normal-force loading parameter due t o  
control deflection 

section normal-force coefficient due t o  control deflection 

wing panel normal-force coefficient due t o  control deflection 
(based on semispan wing area extended t o  fuselage center l i n e )  

aspect r a t i o  

f lap  hinge l i n e  

loca l  chord 

average chord 

Mach number 

chordwise distance 

spanwise distance 

angle of a t tack 

angle of a i leron deflection 

deflector projection 

spoiler projection 



sweep angle a t  quarter-chord l i n e  

sweep angle of f l ap  hinge line 

%/4 

Subscripts : 

S spoiler 

d def lect  or 

RESULTS AND 

Superson 
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DISCUSSION 

c Speeds 

A t  supersonic speeds simple configurations w e r e  i n i t i a l l y  studied, 
such as unswept-wing and delta-wing configurations, and considerable 
success w a s  at tained i n  predicting the loadings, except possibly f o r  the 
high-angle-of-attack, high-control-deflection case. (See ref.  1.) Now 
configurations are being investigated for which more d i f f i cu l ty  i s  
expected i n  the  prediction of loads; f o r  example, a sweptback-wing model 
w i t h  a swept-hinge-line f l ap  w a s  recently investigated, and some of the 
resu l t s  a re  presented i n  figure 1. 

Effects of hinge-line sweep.- Figure 1 shows the  e f fec t  of f l ap  
hinge-line sweep and wing sweep a t  a Mach number of 1.61 on the  chord- 
wise loading due t o  f l ap  deflection. 
i n  th i s  figure are shown the changes in  pressure coeff ic ient  on the  
upper and lower surfaces tha t  are due t o  f l ap  deflection. 
are plot ted against fract ion of the local wing chord. 
these p lo ts  represent loadings a t  the vaxious spanwise s ta t ions indicated 
on the  model sketches. 
hinge-line configuration fo r  which it was  previously shown (ref. 1) t h a t  
t he  f l a p  load as sham behind the  hinge l i n e  i s  about 0.7 of the  value 
predicted by l inear  theory i f  the carryover on the  wing ahead of t he  
hinge l i n e  is not too lzrge. It w a s  also previously indicated i n  refer- 
ence 1 t h a t  t he  results fo r  t h i s  unswept-hinge-line case can be used fo r  
prediction of control loadings a t  higher Mach numbers, perhaps up t o  Mach 
numbers of 3.5 or 4.0. 
spanwise location on the  f l ap  loading or on the  wing carryover load as 
shown ahead of the hinge l ine.  
upper surface. 

On the  ve r t i ca l  scale of the p lo t s  

!I!hese values 
The curves i n  

The p lo t  on the l e f t  represents t he  unswept- 

For t h i s  case there w a s  very l i t t l e  e f fec t  of 

There was no carryover load on the  wing 

In  figure 1 the pressure plot  f o r  the swept-hinge-line model shows 

Both angle of 
t ha t  spanwise location had a considerable e f fec t  on the  loading, par- 
t i cu l a r ly  on the  carryover load ahead of the hinge l ine .  
attack and control deflection are more important fac tors  f o r  t h i s  - 
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configuration than fo r  the unswept-hinge-line configuration. 
swept case the complexities of three-dimensional flow are of great con- 
cern. Also the e f fec t  of sweep may have reduced the loca l  Mach numbers 
normal t o  the f lap  hinge l i n e  suff ic ient ly  t o  cause complications of 
mixed subsonic and supersonic flows such as are  typ ica l  i n  the transonic 
range. 
carryover loads fo r  the  swept-hinge-line case i s  available. 
indications tha t  a solution a t  higher Mach nunibers w i l l  be simpler. 
For example, it was shown i n  a paper on loads at hypersonic speeds 
( r e f .  2) t ha t  the flow over configurations of t h i s  sweep may generally 
be regarded as two-dimensional. 

For the  

A t  present no re l iab le  general procedure f o r  estimating f l ap  or I 

There are 

~ 

1 

Prediction of spoiler loads on three-dimensional wings.- In  addition 
t o  the theoret ical  approach t o  the problan of loads due t o  controls, 
another approach which i s  sametimes useful is  t o  apply data f o r  simple 
configurations t o  more complex configurations. For supersonic speeds 
pressure data a re  available on a f l a t  p l a t e  with an unswept spoiler 
( re f .  3 )  and also on a three-dimensional wing with a similar unswept 
spoiler ( re f .  4 ) .  
and the r e su l t s  a re  shown in f igure 2. 

A preliminary evaluation of th i s  approach w a s  made, 

The top par t  of f igure 2 shows the wing and i t s  spoiler,  which had 
a height of 5 percent of the  mean aerodynamic chord. The lower par t  of 
f igure 2 shows 
surface due t o  a spoiler deflection, plot ted against chordwise distance 
f r m  the spoiler i n  terns  of spoi ler  height, 
were not affected by spoi ler  deflection. The symbols represent the wing 
data  for angles of attack of 0' and 12O which were obtained a t  the  span- 

no effects  on these data, except near the  wing t i p .  
represent the  f la t -p la te  data which, i n  t h i s  case, a re  two-dimensional 
and which were obtained a t  the same Mach nmber as the  wing data. For 
the 12O angle-of-attack case, however, it was necessary t o  adjust  the 
f la t -p la te  data by a method developed by Lord and Czarnecki i n  reference 4. 
In simple terms, t h i s  method adjusts the data by taking in to  consideration 
the  changes i n  Mach nmber on the  basic wing which are due t o  angle of 
attack. 

ACp, which represents the  change i n  loading on the upper I 

The lower-surface pressures 

wise s ta t ion indicated i n  the sketch of the wing. Spanwise location had I 
The so l id  l ines  

I 
The agreement between the  wing data and the  adjusted f la t -p la te  data  

is  generally very good. In other words, it appears t ha t  results fo r  a 
f l a t  p la te  can be used t o  predict  the  load, including the effects  of 
angle of attack, on a wing where the  flow is  approximately two-dimensional. 
It i s  a l so  believed that there may be a poss ib i l i ty  of obtaining agreement 
i n  cases where the flow over the  wing tends t o  be more three-dimensional, 
although suff ic ient  data  t o  test  t h i s  belief a re  lacking. 
however, the flow over the wing must not be s ta l led ,  and there must be no 
sharp changes i n  the pressure dis t r ibut ion on the wing without the spoiler.  

For any case, 
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Transonic Speeds 
. * *  

Estirrbfion of chordwise loahinks - For transonic speeds the  problems 
of p*d.icting loads associated with controls are generally more d i f f i c u l t  
t h d  f o r  supersonic speeds. 
prediction of the  chordwise loads due t o  control deflection. Sane idea 
of the present s ta tus  of this problem for  a typ ica l  s w e p t - w i n g  configura- 
t i o n  is  shown in figure 3 .  

One of the  mos t  d i f f i c u l t  problems is  the  

In the top p a r t  of f igure 3 is shown a swept-wing configuration which 
has an inboard flap. 
represents t he  t o t a l  change i n  wing and flap loading due t o  f l a p  deflec- 
t i o n  and is shown on the v e r t i c a l  scales. 
against f ract ion of the loca l  wing chord as the abscissa. 
in these p lo t s  represent experimental pressure data which were obtained 
a t  a Mach number of 0.98 f o r  an angle of attack of 0' and a f l a p  deflec- 
t i o n  of -15O. 
surface theory for  a Mach nmber of 1.0. 
developed f o r  the  flap-deflected case by Keith C. Harder and E. B. Klunker 
of the Langley Theoretical Mechanics Division, and these unpublished 
r e su l t s  are based on the slender-wing theory by Jones (ref.  5 )  as  extended 
t o  the case with trailing-edge sweep by Mirels (ref. 6). 

In the  plots  a t  the bottom of the figure: n C p , ~  

.* These coefficients are plot ted 
The so l id  1-s - 

The dashed l i n e  represents calculations frm a l i f t i n g -  
The theory was very recently 

This theory predicts the  chordwise loading f a i r l y  well a t  the  inboard 
stat ion;  however, a t  the  outboard s ta t ion  the  theoret ical ly  determined 
loading i s  located forward of most of the  experimentally determined 
loading. 
is  tha t  in the  theoret ical  case the shocks and Mach l ines  extend normal 
t o  the f r ee  stream, whereas i n  the experimental case it i s  known t h a t  the 
shocks and Mach l ines  are swept. 
obtained fo r  a configuration having a lower aspect ra t io ;  however, since 
the  theory is  very new, no attempt has been made t o  define i ts  range of 
application. 

Perhaps the  main reason f o r  t h i s  difference i n  load d is t r ibu t ion  

Better ,agreement could probably be 

Other theoret ical  approaches t o  the  problem of chordwise loading 
a t  transonic speeds such as the use of the hodograph technique are also 
being considered. In the  meantime, some experimental loads data  a l so  
have been obtained f o r  a fairly large range of thin-wing (thickness-to- 
chord r a t io s  of 0.03 t o  0.06) configurations. These configurations are 
indicated i n  figure 4. 

New experimental loads data.- The upper p a r t  of f igure 4 shows con- 

The sketch on the lower right 
figurations having f l ap  controls. The configurations shown i n  the  bottan 
par t  of the f igure have spoiler controls. 
shows an enlarged cross section of the spoiler-slot-deflector control. 
For some of these configurations only force data were obtained, including 
the forces and moments on the controls; however, f o r  most of the  configura- 
t ions pressures were obtained over both the wings and controls. A l l  of 
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these configurations were investigated a t  angles of a t tack up t o  about 
23' with generally a f a i r l y  large range of control deflection. 
maximum Mach number w a s  usually 1.03. 
t i on  a t  the upper l e f t  are  the only resu l t s  t ha t  have so far been 
reported (see r e f .  7) .  

The 
The r e su l t s  for the  configura- 

An attempt has been made t o  use the data f o r  these various config- 
urations t o  develop empirical methods for  estimating chordwise load d i s -  
t r ibut ion due t o  control deflection; however, l i t t l e  success was real ized 
i n  deriving any simple correlations f o r  even the  loading over f laps .  
f o r  the chordwise pressures or  loadings, experience indicates t ha t ,  i n  
general, recourse must be made t o  data fo r  configurations t h a t  approximate 
the  configuration being designed. 

Thus, 

Fortunately, for  transonic speeds the prediction of spanwise load 
distributions due t o  control deflection i s  not always as d i f f i c u l t  as the 
prediction of chordwise loadings. Studies indicate tha t  the shape of 
these span-load dis t r ibut ions i s  essent ia l ly  unaffected by Mach number 
i n  the transonic range fo r  sane configurations. 
effect  suggests the poss ib i l i ty  of using subsonic theory f o r  prediction. 
Figures 5 t o  7 show resu l t s  of a study made of t h i s  poss ib i l i ty  and a l so  
of the effects  of Mach number fo r  some of the configurations shown i n  
figure 4. Most of these resu l t s  are  for  spoiler controls since such 
controls are  of considerable in te res t ,  and fewer loads data ex i s t  fo r  
spoiler controls than for f l a p  controls. 

This lack of Mach number 

Flap and spoiler a t  wing t r a i l i n g  edge.- Figure 5 which per ta ins  t o  
spanwise load dis t r ibut ion indicates the span loadings fo r  an inboard 
flap configuration and an inboard spoiler configuration. 
tr ibutions shown in  the top par t  of the f igure are  due t o  the deflection 
of the inboard f lap,  and the load dis t r ibut ions shown i n  the b o t t m  p a r t  
of the f igure are  due t o  the deflection of the  inboard trailing-edge 
spoiler. Both of these controls were tested on the same swept-wing-body 
combination. On the ve r t i ca l  scale i s  shown the weighted section normal- 
force coefficient due t o  control deflection divided by the wing-panel 
normal-force coefficient due t o  control deflection. The coeff ic ients  a r e  
plotted against f ract ion of wing semispan. 
load dis t r ibut ion over the wing and control, but because the curves have 
been normalized the actual magnitude of the load, of course, i s  not indi-  
cated. 
and are  presented for  an angle of attack of 4'. 

The load d is -  

The curves show the incremental 

The experimentally determined data are  indicated by the symbols 

For both configurations these symbols show tha t  increasing the Mach 
number frm 0.m t o  0.98 had very l i t t l e  e f fec t  on the incremental load 
distribution. These resu l t s  a re  representative of those found t o  ex i s t  
for angles of attack from about 0' t o  6 O .  Because the inboard end of 
t h e  f l ap  was actually s l igh t ly  outboarrd of the fuselage, the loadings 
f o r  the f l ap  configurations show a large decrease i n  t h i s  region. 
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The so l id  l ines  i n  figure 5 represent calculations f o r  a Mach num- 
ber of 0.80 which are based on a subsonic theory as presented by DeYoung 
( re f .  8) i n  which the inboard f l ap  and the inboard trailing-edge spoi ler  
were d i f f e ren t i a l ly  deflected. This theory w a s  devised t o  apply t o  
f l ap  configurations as long as flow separation does not occur on the  
wing. 
f o r  a flap a t  an arbi t rary deflection and with the  same span as the 
trailing-edge spoi ler  are ccanpared with the spoi ler  results. For the  
f l a p  configuration the calculations show very good aweanent with the  
experimental data; however, for the  spoiler configuration the  agreement, 
as  would be expected, i s  not as good. 

Since no theory is  available for  the  spoiler case, calculations 

For outboard controls larger  effects than those shown i n  figure 5 
can probably be expected. 
Mach number has fairly large effects  on the l a t e r a l  posit ion of the 
center of load due t o  the  deflection of outboard flaps;  thus, it appears 
t h a t  subsonic theory cannot generally be extrapolated t o  as high Mach 
numbers f o r  the  outboard-control case as fo r  t he  inboard-control case. 

It has been previously shown (ref .  9) t ha t  

Spoiler controls ahead of wing t r a i l i n g  edge.- Figure 6 shows span- 
wise load dist r ibut ion f o r  a wing with spoiler controls located ahead of 
t he  t r a i l i n g  edge. 
control shown in f igure 5 and extend over more of the  wing semispan. The 
dis t r ibut ions shown i n  the top portion of f igure 6 are due t o  the deflec- 
t i o n  of a f lap  spoiler. The distributions shown i n  the lower pa r t  of 
figure 6 a r e  due t o  the deflection of a spoiler-slot-deflector on the  
same model. 
of i ts  good effectiveness a t  high angles of a t tack.  

These controls were more highly swept than the spoi ler  

This type of control has been of par t icular  i n t e re s t  because 

The r e su l t s  of experimental investigations represented by the symbols 

An increase i n  Mach number fran 0.80 t o  1.00 caused an outboard 
i n  figure 6 show a somewhat larger  effect  of Mach number than is  shown i n  
f igure 5.  
s h i f t  i n  the center of additional load f o r  both configurations. These 
r e s u l t s  a r e  typical  of resu l t s  found t o  ex i s t  over a range of angle of 
a t tack frm about Oo t o  60. 
t he  spoiler-slot-deflector configuration a re  considerably d i f fe ren t  fran 
those fo r  the spoi ler  configuration. These differences are  mainly due 
t o  the influence of the  deflector on the flow. The sol id  l ines  shown 
here represent subsonic calculations similar t o  those shown i n  figure 5 
except these calculations are the average of curves f r m  references 8 and 
10 since the controls were res t r ic ted  t o  one wing panel. It i s  seen that 
the  agreement between the calculations and experiment i n  figure 6 i s  
about the same as that shown for  the spoiler configuration i n  figure 5. 

The experimental span-load dist r ibut ions f o r  

Loads a t  a high ang l e  of attack.- Thus f a r  in the  discussion of 
spanwise load dist r ibut ions a t  transonic speeds, the high-angle-of-attack 
case has not been considered. In f igu re  7, therefore, are shown d i s t r i -  
butions a t  a high angle of attack for  the spoiler-slot-deflector 
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configuration shown i n  figure 6. 
ber of 0.60 are  indicated by the  so l id  l ine.  
indicated by the dashed l ines .  

Subsonic calculations f o r  a Mach num- 
The experimental data a r e  

The results f o r  t h i s  par t icular  configuration indicate t h a t  Mach 
number has a large e f fec t  and that theory no longer predicts the  shape 
of the loadings. These effects  a r e  mainly the r e s u l t  of flow separation 
i n  the region of the wing t i p ;  therefore, as is  w e l l  known, when separated 
f low has a large e f fec t  on loading then recourse must be made t o  experi- 
mental data fo r  loads information. 

Loads on control surfaces.- Now tha t  the discussion i n  t h i s  paper 
on the recent overall  wing-loads information has been concluded, the 
control loads on the f l ap  spoiler and the spoiler-slot-deflector a re  
considered. Some of these control loads are  shown i n  figure 8. 

In  the lower par t  of f igure 8 is  presented a comparison of the span- 
wise load dis t r ibut ion for  the  spoi ler  and deflector cmponents of these 
controls. On the ve r t i ca l  scale is  plot ted the weighted control section 
normal-force coefficient divided by the t o t a l  control normal-force coef- 
f ic ien t .  These coefficients m e  plotted against f rac t ion  of the wing 
semispan. 
and a Mach number of 1.00. 
urations show very l i t t l e  e f fec t  of Mach number f o r  Mach numbers from 
0.60 t o  1.03. The r e su l t s  show tha t  the type of control component has 
very l i t t l e  e f fec t  on the distributions; therefore, these dis t r ibut ions 
appear t o  be primarily affected by the wing geometry and the  control 
locat ion. 

The span-load dis t r ibut ions a re  f o r  an angle of a t tack of 0' 
Other unpublished data fo r  the  same config- 

I n  the upper r igh t  par t  of f igure 8 i s  shown the var ia t ion of t o t a l  
control normal-force coefficient w i t h  angle of a t tack fo r  the spoi ler  
and deflector cmponents of the  spoiler-slot-deflector. The sol id  and 
dashed l ines  indicate the e f fec t  of increasing Mach number from 0.60 t o  
1.00. For both the spoiler and deflector components t h i s  Mach number 
effect  is  not very large over the range of angle of attack. The normal- 
force coefficients fo r  the spoiler portion of the control decrease i n  
magnitude w i t h  increasing angle of attack, whereas those fo r  the deflec- 
t o r  a re  not affected. 
data ( ref .  11) indicate tha t  fo r  large control deflections t e s t s  need be 
made only a t  low angles of a t tack i n  order t o  es tabl ish the maximum con- 
t r o l  loads. 

The data in  the present case and other available 

CONCLUDING REMARKS 

The resu l t s  of th i s  study show tha t  success i n  predicting loads 
associated w i t h  controls has not kept pace with the  acquisit ion of 
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experimental data. 
f o r  swept-flap configurations, but methods of prediction for  these cases 
m u s t  s t i l l  be developed. A t  transonic speeds more experimental data are 
available, but only limited success in correlating experimental data w i t h  
theory has been realized. 

A t  supersonic speeds data f o r  loads axe now available 

Langley Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field, Va., Maxch 5 ,  1-93". 

, 
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